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Chronic myelogenous leukemia (CML) is characterized by a t(9;22)
chromosome translocation (Philadelphia chromosome-positive [Ph+])
that creates the BCR/ABL oncogene. This fusion protein displays con-
stitutive tyrosine kinase activity, leading to the induction of aberrant
proliferation and neoplastic transformation [1]. The Ph+ chromosome
is found in more than 95% of CML and in Ph+ acute lymphoblastic leu-
kemia.

ABL tyrosine kinase inhibitors (AKls) are utilized for the treatment of
Ph+ leukemia; the initial response is beneficial [2—4] but unfortunately,
the clinical efficacy of this treatment decreases steadily as the disease
progresses [5]. CML blast crisis or Ph+ acute lymphoblastic leukemia pa-
tients only benefit from TKI treatment temporarily, if at all [6, 7].

Resistance to drug therapy in Ph+ leukemia is mediated by mutations
within BCR/ABL or by BCR/ABL-independent mechanisms, such as tu-
mor microenvironment-mediated drug resistance [8]. The bone marrow
(BM) plays a vital role in hematopoiesis, as well as in different aspects
of disease progression in hematological malignancies [8, 9]. The BM
microenvironment is also critical for long-term hematopoiesis, and for
the maintenance and regulation of stem cells and their progeny [9]. It is
a rich source of paracrine- and autocrine-derived factors which have also
been implicated in drug resistance for both hematologic malignancies
and solid tumors that metastasize to the BM [10-12]. Conditions within
the BM niche, including soluble factors (SFs), interleukins (ILs), stromal
cells, and extracellular components, contribute to reduced drug sensitiv-
ity of cancer cells [10, 13, 14], including drug resistance to multiple TKIs,
such as imatinib, nilotinib, and dasatinib [15-19].

To explore the BCR/ABL-independent mechanisms underlying Ph+ leu-
kemia drug resistance, we investigated the ability of SFs collected from
mesenchymal stem cells (MSCs) to confer drug resistance in CML cell
lines in vitro. Exposure of CML cells to mesenchymal SFs conferred re-
sistance to imatinib, but not crizotinib, which was mediated in part by
the Janus kinase/signal transducers and activators of transcription (JAK/
STAT) pathway. Inhibition of JAK2 by ruxolitinib restored sensitivity to
imatinib in CML cells exposed to mesenchymal SFs. Moreover, the multi-
TKI crizotinib, which has been reported to also inhibit ABL tyrosine kinase
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activity, was also able to abrogate JAK2 activity,
thereby overcoming SF-mediated drug resistance
in Ph+ leukemia.

Blast crisis human chronic myelogenous leu-
kemia cell line K562 and megakaryocytic leuke-
mia cell line MEG-01 (American Type Culture Col-
lection (ATCC), VA, USA), and Ba/F3 JAK2 V617F
cells expressing activated JAK2 and harboring the
V617F mutation, have been described previously
[20]. Cells were cultured in RPMI 1640 complete
medium supplemented with 10% (w/v) fetal bo-
vine serum, 1% (w/v) L-glutamine, and penicillin/
streptomycin. The human and murine stromal
cells HS-5 and MS-5, respectively (ATCC), were
maintained under the same conditions. All cells
were grown at 37°C in a humidified atmosphere
with 5% CO,.

HS-5 or MS-5 cells were grown in complete
RPMI medium and CM were collected after 72 h.
Contaminating cells were cleared by centrifuga-
tion at 1,000 rpm for 1 min; the collected super-
natant was used fresh in each experiment.

Cells (2 x 10°/well) were plated in six-well
plates. After 24 h, cells were treated with the
specified agents. Solvent-treated samples were
incubated with 1% (w/v) dimethyl sulfoxide. Cells
were collected 72 h later, stained with 0.4% (w/v)
trypan blue solution (1 : 1, v/v), and counted using
a hemacytometer [20].

Cytokine levels were measured in the CM of
MS-5 cells using mouse cytokine array panel A
(Proteome Profiler Array, R&D Systems, MN, USA).
Briefly, CM were mixed with a cocktail of bioti-
nylated detection antibodies. The CM-antibody
mixture was then incubated with the mouse cy-
tokine array membrane. Following a wash to re-
move unbound material, streptavidin conjugated
to horseradish peroxidase and chemiluminescent
detection reagents were added sequentially. Data
were visualized using X-ray film. Optical densities
were determined using Image) software.

Clonogenicity assay was performed as previ-
ously described [21]. The plates were stained for
4 h with 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide, and the dye was
extracted with solubilization buffer (20% w/v so-
dium dodecyl sulfate (SDS), 50% w/v N,N-dimeth-
ylformamide, 25 mM HCI) for 24 h. Optical density
was measured at 570 nm with a reference wave-
length of 630 nm.

Immunoblotting was performed as described
previously [22]. Anti-pSTATs (phosphor-Stat an-
tibody sampler kit cat #9914), anti-JAK2 (cat
#3230), anti-pJAK2 (Tyr 1007/1008)(cat #3776),
anti-phosphor Abl (Tyr 245) (cat #2861) and an-
ti-cleaved PARP (cat #5625) antibodies were from
Cell Signaling Technology (MA, USA). Anti-PARP
(cat #SC-8007) antibodies were from Santa Cruz
Biotechnology (CA, USA).
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Figure 1. Mesenchymal stem cell (MSC) conditioned medium (CM) confers drug resistance to imatinib in CML cells.
A — MEG-01 and K562 cells were exposed to increasing concentrations of CM (0, 6.25, 12.5, 25%) collected from
MS-5 or HS-5, and viability of remaining cells after treatment with 1 uM imatinib for 72 h was determined. CM col-
lected from MS-5 or HS-5 supplied to MEG-01 and K562, respectively. B—MEG-01 and K562 cells were exposed to
12.5% CM collected from MSC cells in the presence or absence of 1 uM imatinib for 72 h. Negative control — 12.5%
RPMI medium +1% FCS. ***Significantly different from untreated cells at p < 0.01 and 0.001, respectively. The ex-

periment was repeated twice, with a comparable outcome
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Student’s t-test was used for the statistical
analyses, with the significance level set at p < 0.01
or p < 0.001.

To address drug sensitivity of CML cell lines to
AKls in the presence of CM collected from MSC
cells, we utilized human K562 [23] and MEG-01
cells [24] as an in-vitro model of CML We followed
the effect of imatinib on proliferation and trigger-
ing of PARP cleavage as a marker of apoptosis in-
duction [25] in MEG-01 CML cells in the presence
and absence of CM collected from MS-5 cells. Ex-
posure of MEG-01 cells to various concentrations
of MS-5 CM (6.25-25%) resulted in increased cell
survival in the presence of imatinib (Figure 1 A). In
fact, as little as 3% MS-5 CM was sufficient to con-
fer partial drug resistance in MEG-01 cells treated
with imatinib (data not shown). Next, we mea-
sured the effect of MS-5 CM on imatinib-induced
growth inhibition using K562 and MEG-01 CML
cells. MS-5 CM protected cells of both CML lines
from imatinib-induced growth inhibition, albeit
with varying potency. Overall, the magnitude of
the drug resistance observed in MEG-01 cells was
more than 2-fold greater than that in K562 cells
(Figure 1 B). This suggested that murine SFs are
active against human CML cells, although the basis
for the different responses of K562 and MEG-01
cells to MS-5 CM is unclear. Nevertheless, we chose
to further focus on drug sensitivity of MEG-01 cells
in response to exposure to MS-5 CM.

We asked whether CM collected from other cells
might promote resistance to imatinib in MEG-01
cells. CM collected from A2780 and B16-F10 cell lines
were not efficient at conferring drug resistance to
imatinib (Supplementary Figure S1 A). Additional
data (Supplementary Figure S1 B) supported involve-
ment of SFs, but not microvessels, as mediators of
drug resistance in CML exposed to MSC CM [26].

We recently demonstrated that crizotinib, an
anaplastic lymphoma kinase (ALK)/ROS1 inhibi-
tor [27, 28], efficiently and selectively suppresses
growth of Ph+ cells, and inhibits activity of native
and T315l-mutated BCR/ABL[29, 30]. Here, we also
explored the ability of CM collected from MSCs to
induce drug resistance in MEG-01 cells exposed to
crizotinib. Figure 2 showsthat MS-5CM conferredsig-
nificant drug resistance to imatinib in MEG-01 cells,
but had a minimal protective effect in cells exposed
to either ponatinib [31] or crizotinib (Figure 2 A).
Next, we monitored the ability of MSC CM to in-
terfere with imatinib- and crizotinib-induced apop-
tosis of MEG-01 cells. Initially, MEG-01 cells were
treated with crizotinib or imatinib for 24 h in the
presence or absence of MS-5 CM. Exposure to ima-
tinib/crizotinib significantly increased the levels of
cleaved PARP enzyme (Figure 2 B) [25]. Interestingly,
the presence of MS-5 CM prevented PARP cleavage,

again suggesting that it confers drug resistance to
imatinib in MEG-01 cells (Figure 2 B). In contrast,
exposure of MEG-01 cells to crizotinib resulted in
significant cleavage of PARR indicating induction of
apoptosis (Figure 2 B). Next, we examined the ef-
fect of MS-5 CM on the activity of BCR/ABL in MEG-
01 cells exposed to imatinib or crizotinib. Data pre-
sented in Figures 2 C and D show that imatinib was
active in inhibiting BCR/ABL auto-phosphorylation
in the presence and absence of MS-5 CM. In addi-
tion, the high concentration of crizotinib was active
at inhibiting BCR/ABL auto-phosphorylation, but
showed only marginal activity at the low concen-
tration, in the presence and absence of MS-5 CM.
Imatinib was active at inducing PARP cleavage in
MEG-01 cells, and induction of PARP cleavage was
largely reduced (by about 50%) in the presence of
MS-5 CM. In contrast, crizotinib induction of PARP
cleavage was not reduced, but rather enhanced in
the presence of MS-5 CM. Thus, the apoptosis-in-
ducing activity of imatinib, but not of crizotinib, was
reduced in the presence of MS-5 CM with no signif-
icant change in imatinib’s ability to inhibit BCR/ABL
auto-phosphorylation.

To identify potential SFs in the MS-5 CM that are
involved in mediating drug resistance to imatinib,
we monitored the levels of a variety of SFs using
a cytokine array assay kit. Figures 3 A and B shows
a number of cytokines and ILs, in particular IL-3 and
IL-17 (Figures 3 A, B), that were present at high levels
in the MS-5 CM, whereas others, such as IL-1Ra and
IL-12 p70, were present at low levels (Figures 3 A, B).
We hypothesized that one or a few cytokines are in-
volved in mediating imatinib drug resistance in CML
cells, and we selected IL-3 to further investigate this.
Increasing concentrations of murine IL-3 conferred
resistance to imatinib in MEG-01 cells in a dose-de-
pendent manner (Figure 3 C).

JAK/STAT pathways are downstream regu-
lators of a number of ILs, such as IL-6 and IL-3,
which have also been implicated in drug resis-
tance in CML [15, 32, 33]. Moreover, emerging
data also implicate the JAK/STAT pathway in
BM-mediated drug resistance [15, 16, 19]. Thus,
we investigated the involvement of the JAK/
STAT pathway in the observed imatinib resis-
tance in CML cells exposed to MS-5 CM. MEG-01
cells were exposed to MSC CM and levels of vari-
ous phosphorylated STATs were monitored.

The levels of both pSTAT1 and pSTAT2 were un-
detectable in the MEG-01 cells, with no change
after exposure to either MS-5 CM (Figure 4 A) or
HS-5 CM (data not shown). Moreover, STAT6 and
STAT3 were not phosphorylated in MEG-01 cells,
and exposure to MS-5 or HS-5 CM significantly
stimulated their phosphorylation levels. In con-
trast, STAT5, which is a direct downstream target
of BCR/ABL [34-36], was significantly phosphory-
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lated in MEG-01 cells and the phosphorylation lev-
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els were further increased upon exposure to both  JAK inhibitors on imatinib resistance mediated

HS-5 and MS-5 CM (Figure 4 A). MS-5 CM. Figure 4 B shows the viability of MEG-
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Figure 2. Crizotinib overcomes mesenchymal stem cell (MSC) conditioned medium (CM)-mediated drug resistance.
A — MEG-01 cells were exposed to 1 pM imatinib, ponatinib or crizotinib in the presence or absence of 12.5%
HS-5 CM and the number of viable cells was counted after 72 h exposure. B— MEG-01 cells were exposed to 1 uM
imatinib, ponatinib or crizotinib in the presence or absence of 12.5% MS-5 CM and the number of viable cells was
counted after 72 h exposure. C — Immunoblot of MEG-01 cells exposed to 1 uM imatinib or crizotinib in the pres-
ence or absence of MS-5 CM. In addition, 1 uM imatinib or crizotinib was added to MEG-01 cells co-cultured with
MS-5 cells. Filters were probed with anti-cleaved (c)-PARP antibody and a-tubulin was used as a loading control.
D — Immunoblot of K562 cells exposed to 0.5 pM and 2 pM imatinib or crizotinib in the presence or absence of
MS-5 CM. Filters were probed with anti-c-PARP antibody, anti-phospho Abl (Tyr 245) and anti-GAPDH was used as
a loading control. E — Quantitation of experiment in D showing relative levels of cleaved PARP and phospho BCR/
ABL (relative to GAPDH). *Significantly different from untreated cells at p < 0.01. The experiment was repeated
twice, with a comparable outcome
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ruxolitinib [37]. As expected, exposure of MEG-01
cells to MS-5 CM conferred drug resistance to ima-
tinib, but not crizotinib. When ruxolitinib was add-
ed along with imatinib, MEG-01 sensitivity to the
latter was partially restored (Figure 4 B), support-
ing the involvement of JAK1/2 in mediating the
MSC CM-induced drug resistance. Further support
for the ability of ruxolitinib to restore sensitivity
to imatinib in the presence of MS-5 CM was pro-
vided by following the levels of cleaved PARP in
MEG-01 cells treated with imatinib, crizotinib, rux-
olitinib, or imatinib + ruxolitinib in the presence
and absence of MS-5 CM. Imatinib and crizotinib
induced PARP cleavage in MEG-01 cells. However,
no PARP cleavage was observed in MEG-01 cells
treated with either imatinib or ruxolitinib alone in
the presence of MS-5 CM (Figure 4 C). On the oth-
er hand, ruxolitinib + imatinib effectively caused
significant PARP cleavage, indicating restoration
of partial sensitivity of MEG-01 cells to imatinib in
the presence of MS-5 CM (Figure 4 C).

Data presented in Figures 4 B and C show that
inhibition of JAK1/2 (by ruxolitinib) can restore
sensitivity to imatinib in CML cells exposed to
MS-5 CM. We therefore speculated that crizo-
tinib’s ability to overcome mesenchymal SF-me-

diated drug resistance in CML might be related
to JAK1/2 activity. To address this point, we uti-
lized a Ba/F3 model system in which cells become
IL-3-independent upon introduction of activated
JAK2 (JAK2 V617F) [20]. Use of this system al-
lowed us to monitor the direct effect of crizotinib
on JAK2 activity. Initially, we monitored the effects
of crizotinib and other relevant TKls on the clo-
nogenicity of Ba/F3 JAK2 V617F cells. Figures 5
A and B shows that the colony-forming ability of
Ba/F3 JAK2 V617F cells was not affected by imati-
nib or other ABL inhibitors such as GNF-2 or GNF-
5 [38]. However, crizotinib inhibited clonogenicity
of Ba/F3 JAK2 V617F cells with a potency compa-
rable to that of ruxolitinib. Interestingly, ponatinib
was also a potent inhibitor of Ba/F3 JAK2 V617F
clonogenicity.

Next, we utilized the same cells to monitor direct
inhibition of JAK2 auto-phosphorylation by crizo-
tinib. Ruxolitinib actively inhibited auto-phosphor-
ylation of JAK2 V617F, and crizotinib also exhibited
strong inhibition of JAK2 auto-phosphorylation.
In contrast, neither imatinib nor GNF-5 inhibited
JAK2 auto-phosphorylation (Figures 5 C, D).

CML-targeted therapy has proven to be very ef-
fective in managing the disease and has led to ex-
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Figure 3. Identification of soluble factors (SFs) in MS-5 conditioned medium (CM) as potential mediators of ima-
tinib resistance in MEG-01 cells. CM was collected from MS-5 cells after 72 h of culture. A — Immunoblot test for
relative expression levels of 40 factors in MS-5 CM was carried out according to the manufacturer’s instructions.
B — Optic absorption was measured by TINA software and levels of soluble factors in MS-5 CM relative to RPMI are
presented. C — Cell viability (number of remaining cells) of K562 cells treated with 1 uM imatinib and increasing
concentrations of murine (m) IL-3 for 72 h was determined. *Significantly different from untreated cells at p < 0.01.
The experiment was repeated twice, with a comparable outcome
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tended lifespans for many CML patients. However,
about 30% of those patients fail to respond, re-
spond suboptimally, or experience disease relapse
after treatment with CML-targeted therapy due, in
part, to drug resistance [5, 39]. In general, Ph+ leu-
kemia resistance to drug therapy might be due to
mutations in the cancer cells, including alterations
in the BCR/ABL fusion gene, or associated with
interactions between Ph+ leukemia cancer cells
and the BM microenvironment, leading to tumor
microenvironment-mediated drug resistance and
consequently a low level of residual disease and
disease progression [8].

Intensive effort has been invested in develop-
ing strategies to address drug resistance in Ph+
leukemia by introducing new TKIs that are active
against ABL1 mutations, including the gatekeeper
T315I mutation [40]. Moreover, effort is still being
made to target additional regulatory elements
within the ABL1 kinase, such as the myristoyl-
binding pocket in the BCR/ABL protein [20, 41], or
to use a drug combination [21, 42].

The BM microenvironment contributes signifi-
cantly to drug resistance in both hematologic ma-
lignancies and solid tumors that metastasize to
the BM [10-12]. Conditions in the BM niche that
contribute to reduced drug sensitivity might in-

clude SFs, stromal cells, and extracellular compo-
nents[10, 13, 14,43]. Thus, modulation of signaling
pathways involved in mediating the interaction,
adhesion, or homing of hematopoietic cancer cells
to BM stromal cells is expected to influence drug
sensitivity in hematopoietic malignancies [13-16].

The BM microenvironment-mediated drug re-
sistance might be due to SFs or to cell adhesion to
the microenvironment compartment. To address
BM microenvironment-mediated drug resistance,
we monitored the ability of CM collected from
MSCs to affect the sensitivity of CML cells to ima-
tinib and crizotinib. We monitored the viability of
CML cells as well as induction of PARP cleavage
(Figures 1, 2), a marker of apoptosis induction [25].

MEG-01 cells were sensitive to imatinib and
crizotinib as evidenced by inhibition of CML cell
viability (Figures 1 A, B) and induction of PARP
cleavage (Figures 2 B, C). However, CM collected
from MSCs conferred resistance to imatinib, con-
sistent with previous observations [16]. Interest-
ingly, MEG-01 cells were more sensitive to MS-5
CM than K562 cells. The presence of CM from
MSCs reduced the sensitivity of the CML cells to
imatinib-induced apoptosis, but not to crizotinib,
suggesting that mesenchymal SFs can promote
imatinib resistance with continued sensitivity to
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the activity of crizotinib (Figure 2). We speculated
that drug resistance stimulated by the CM is medi-
ated by SFs secreted by the MSCs. We identified
a number of SFs that were present in significant
amounts in the CM, such as IL-3, IL-1Ra, IL-17 and
IL-12 p70, and speculated that one or a combina-
tion of these is responsible for mediating imatinib
resistance in CML cells. Our speculation was sup-
ported by previous reports showing that IL-7 se-
creted by MSCs in the BM might protect leukemic
cells from apoptosis induced by imatinib through

Ruxolitinib

C GNF-5

the JAK/STAT-signaling pathway [44]. In addition,
Jiang et al. [45] demonstrated autocrine produc-
tion and activity of IL-3 and granulocyte colony-
stimulating factor (G-CSF) in CML [45]. Moreover,
culturing K562 cells with HS-5-derived CM signifi-
cantly inhibited apoptosis induced by imatinib via
a STAT3-dependent mechanism [18], and imatinib
sensitivity was restored by exposure to STAT3 in-
hibitor [46]. Our results are also corroborated by
Zhang et al. [43], who found that CML stem cells
demonstrate increased IL-1 receptor expression
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and an enhanced signaling response; however,
inhibition of IL-1 signaling when combined with
TKls enhanced anti-CML efficacy. In our study, we
also monitored levels of activated STAT proteins
and found that the presence of MSC CM results in
activation of STAT3 and STAT6 (Figure 4). Increased
activation of STAT3 has been associated with ma-
lignant cell transformation and drug-resistant tu-
mors [44, 46, 47]. Moreover, exposure of CML cells
to MSC CM caused an increase in pSTAT3 and con-
sequently increased the expression of STAT3-regu-
lated genes such as Bcl-xl, Mcl-1, and survivin [46].
Thus, we argue that exposure to SFs that stimu-
late activation of STAT3 or STAT6 promotes the
expression of a variety of antiapoptotic genes [48,
49], and hence promotes drug resistance.

JAK family kinases are the upstream activators
of STAT proteins and also participate in mediating
the function of a variety of cytokines [50]. Thus,
we monitored the ability of the JAK1/2 inhibitor
ruxolitinib [37] to abolish the drug resistance me-
diated by MSC CM. The presence of ruxolitinib
restored partial imatinib sensitivity in CML cells
exposed to MS-5 CM. Our results are consistent
with data reported by Mencalha et al. [51] show-
ing that STAT3 inhibitor has an additive effect with
imatinib in inducing apoptosis in CML cells, sug-
gesting a potential therapeutic value to combin-
ing these two drug regimens for the treatment of
CML patients. Moreover, evidence for the poten-
tial of drug combinations in CML therapy was also
provided by Ma et al. [52], who showed inhibition
of growth and proliferation, cell-cycle blockade,
and induction of apoptosis in K562 cells trans-
duced with STAT3 siRNA. Thus, the use of two
components was recommended to overcome SF-
mediated drug resistance: one to inhibit BCR/ABL
and the other to inhibit JAK1/2 activity. However,
with the approval of multitarget kinase inhibitors,
one might select those that are capable of inhibit-
ing both relevant targets. Previously, we demon-
strated that crizotinib efficiently inhibits kinase
activity of native and T315I-mutated BCR/ABL[29].
In this study, we also found that crizotinib inhibits
JAK2 activity. However, crizotinib activity against
JAK1 remains to be determined. Crizotinib’s ability
to inhibit JAK2 enables it to overcome JAK2-depen-
dent SF-mediated drug resistance. Similarly, pona-
tinib as a multi-kinase inhibitor was active in over-
coming SF-mediated drug resistance in MEG-01,
in part by targeting JAK2 activity, probably indi-
rectly (Figure 5). The exact mechanism by which
ponatinib inhibited clonogenicity of Ba/F3 JAK2
V617F remains to be elucidated.

In conclusion, the study showed that SFs secret-
ed from MSC, such IL-3 and IL-7, among others, are
capable of activating the JAK/STAT pathway and
consequently compromise the apoptosis-inducing

activity of imatinib targeting CML cells. On the
other hand, the multi-kinase inhibitor crizotinib, an
FDA-approved drug for ALK-positive non-small cell
lung carcinoma targeting ALK kinase, was found to
inhibit BCR/ABL kinase activity and is also active
in inhibiting JAK2. Exposure to crizotinib actively
overcame drug resistance in CML mediated by SFs
secreted from MSC. Our results raise the possibil-
ity of therapeutic use of crizotinib for CML patients
who also require a JAK2 inhibitor to overcome BM
microenvironment-mediated drug resistance.
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